If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-14=0
a = 1; b = -2; c = -14;
Δ = b2-4ac
Δ = -22-4·1·(-14)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{15}}{2*1}=\frac{2-2\sqrt{15}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{15}}{2*1}=\frac{2+2\sqrt{15}}{2} $
| 6(c-6)=63 | | 3x+4=9/2 | | 7+2k=k+8 | | 4y+8=15y-3+64 | | -w/4=-33 | | 6x-12/4=4x+32 | | 4x-6=98 | | 5x−8−2x+14=x+8+2x+13 | | (x-18)+(3x+16)=90 | | 15d-0.75=13d-0.50 | | (x-18)(3x+16)=90 | | 9x+-10=7x+2 | | 3x+5=31x+3 | | (5x-7)+(4x+18)=360 | | 2x÷3-x÷5=14 | | 20^{2x}-70^x+5=0 | | b^2-2b-51=0 | | 5x-7+4x+18=360 | | -3(-2)=4y+3 | | -9x-15+x-2=47 | | -3x-23=111 | | x-16+70=180 | | -3x=4(-3/4)+3 | | 2x+1564x+192=x | | x÷4-8=2 | | −9x-15+x−2=47 | | v^2-6v-55=0 | | 4x+16+100=180 | | 45=3u-12 | | 2(5x+2)-4x=-2 | | 10x-(5+4x)=14x-5 | | 3x+9-x=6+2x+3 |